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Fig. 1: Aug3D addresses challenges with low-overlap clusters in large-scale outdoor datasets for generalizable novel view
synthesis by reconstructing scenes, sampling camera poses to mitigate overlap issues, and combining these samples with the
real dataset, resulting in improved performance.

Abstract— Recent photorealistic Novel View Synthesis (NVS)
advances have increasingly gained attention. However, these
approaches remain constrained to small indoor scenes. While
optimization-based NVS models have made attempts to address
this, generalizable feed-forward methods—offering significant
advantages—remain underexplored. In this work, we train
PixelNeRF, a feed-forward NVS model, on the large-scale
UrbanScene3D dataset. We propose four training strategies to
cluster and train on this dataset, highlighting that performance
is hindered by limited view overlap. To address this, we
introduce Aug3D, an augmentation technique that leverages
reconstructed scenes using traditional Structure-from-Motion
(SfM). Aug3D generates well-conditioned novel views through
grid and semantic sampling to enhance feed-forward NVS
model learning. Our experiments reveal that reducing the
number of views per cluster from 20 to 10 improves PSNR
by 10%, but the performance remains suboptimal. Aug3D
further addresses this by combining the newly generated novel
views with the original dataset, demonstrating its effective-
ness in improving the model’s ability to predict novel views.
https://aug3Dim.github.io

I. INTRODUCTION

Photorealistic Novel View Synthesis (NVS) plays a vital
role in applications requiring immersive experiences, such as
AR/VR. As these methods gain popularity, there is a growing
need to extend their capabilities to outdoor environments.
In this study, we introduce Aug3D, a reconstruction-based
augmentation technique designed to adapt existing outdoor
datasets for NVS applications.
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Generalizable models, exemplified by works like Pixel-
NeRF [38] and Splatter-Image [24], render photorealistic
novel views applicable to a wider range of inputs. These
models are typically trained on smaller, object-centric scenes
or indoor environments. In this work, we extend the ap-
plication of NVS to large outdoor environments, aiming to
broaden the scope of these methods for novel view synthesis.

Alternatively, we take inspiration from scene-specific
NeRF approaches in the research community, such as
MegaNeRF [30] and VastGaussian [15], which fine-tune the
NeRF model for NVS on specific scenes. These provide
insights into selecting large outdoor scenes for training
generalizable models to synthesize novel views.

Challenges: Utilizing large outdoor scenes for general-
izing NVS models presents several hurdles. The first arises
from how these scenes are typically captured using drones,
often employing constant-altitude grid scans over regions
of interest [21], [30]. This results in captures that vary
predominantly in a translated direction, introducing novel
features to the scene between consecutive shots and posing
difficulties for NVS methods to operate effectively. Addition-
ally, most existing NVS work focuses on object-centric scene
captures, for objects or indoor/outdoor environments. Such
captures are vital, as the models rely on correlated features
across input images to render novel views. Furthermore,
generalizable NVS models typically train on datasets with
minimal variation across input images (e.g., DTU dataset
[11] ), where input images are placed in an object-centric
way and exhibit controlled changes in elevation and azimuth.
As a result, novel views are interpolated rather than extrap-
olated. Therefore, large outdoor scene environments used
for scene-specific NVS models must (1) align with existing
generalizable NVS model training setups, introducing fewer
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new elements across input images, and (2) feature input
images that are closely spaced with controlled variations in
view poses (e.g., DTU [11], Shapenet [4] dataset).

Aug3D: To address the challenges, we introduce Aug3D
1, an augmentation camera sampling strategy to adapt large
outdoor scene datasets such as UrbanScene3D [16] and
Mill-19 [30] for training generalizable novel view synthesis
models. To mitigate sensitivity to input image poses, we
cluster them into N views, maximizing shared points through
Structure from Motion (SfM). However, sparse data collec-
tion via drone flight requires further measures to enhance
feature correlation among input images. To accommodate
poses beyond original locations and ensure scale invariance,
we sample camera poses by geometric reconstruction of large
scenes. While reconstruction quality impacts these views,
advances in photorealistic scene-specific NVS models such
as Mega-NeRF [30], Block-NeRF [25], and VastGaussians
[15] suggest sufficient development within the research com-
munity for our proposed method.

Contributions: Our work addresses the question: “How
can we effectively train existing Generalizable NVS models
for large-scale outdoor datasets?” Here are our key contribu-
tions:

• We cluster outdoor datasets using high point matching,
aligning them with the DTU format for compatibility
with any NVS model designed for the DTU dataset.
We validate this approach with PixelNeRF [38].

• Our multi-scaling camera sampling method generates
additional viewpoints not present in the original dataset.
These new viewpoints, derived from mesh-based scene
capture, produce synthetic renders whose quality relies
on reconstruction accuracy.

• We optimize the augmentation process with semanti-
cally aware sampling, enhancing the diversity of novel
viewpoints added to the dataset. This pipeline combines
geometric and feature-wise segmentation techniques.

II. RELATED WORK

Novel View Synthesis. Novel view synthesis (NVS),
tackles the challenge of synthesizing novel RGB views with a
set of RGB input views (without necessarily constructing ex-
plicit 3D geometry). NVS has seen a rapid growth of interest
with the advent recent breakthroughs in learning/neural based
methods. These neural methods can be broadly classified into
surface or volumetric based approaches[26]. Neural surface
approaches reason about the surfaces in the scene either
representing them implicitly with zero level set functions
[41], [12], with continuous parametric methods [29], [2], or
explicitly using meshes [22], or points/surfels [33], [1]. Neu-
ral volumetric approaches reason about the volumes occupied
by elements in the scene that represent them implicitly [19],
[23], as a Neural Radiance Field (NeRF) [17], as a set of
volumetric primitives [13], or explicitly as voxel grids [37],
[10] or multiplane images [34].

In this work, we focus our evaluation on neural volumetric
methods specifically, the NeRF [17] lines of work due to its
significant success in high fidelity novel view synthesis and

the existence of efforts to extend such approaches to large-
scale urban settings.

Generalizable NVS. Generalizable, image-based, or feed-
forward NVS refers to models that can predict novel views
at test time without having to re-optimize any learnable
parameters. This is done by conditioning the architecture
on sets of input views and describing different scenes while
training. In contrast to the optimization-based single-scene
networks, feed-forward models can learn semantic priors that
make them superior in sparse input NVS.

Works like PixelNeRF [38] conditions NeRF on pixel
aligned features recovered by projecting a query point onto
feature maps of the input views. IBRNet [32] uses a similar
approach but uses transformers. MVSNeRF[6] uses 3D con-
volutions on top of a plane sweep of input images to get per
voxel image features and uses that to condition NeRF per
query point. MuRF[36] constructs a frustum volume aligned
with the target view allowing them to utilize 3D convolutions
to predict the volume. Similar recent works [24], [5], [8] have
worked on generalizing 3D Gaussian splatting through input
image conditioning.

All mentioned works focus on small to medium scale
scenes with very limited target view ranges mainly due to the
absence of city scale datasets amenable to feed-forward NVS.
Our objective is to offer a training and data augmentation
strategy to allow such works to learn large-scale urban scene
priors efficiently.

Large Scale Scene Reconstruction: Large city-scale
reconstruction has been a long-standing field of research.
Many works attempt to reconstruct large scenes using tra-
ditional methods such as Lidar point clouds [14], meshes
[31], or signed distance functions [20]. However, there is an
increased interest in using neural volumetric representations
for their high-fidelity reconstructions. [30], [25], [40] recog-
nize NeRF’s capacity limitations and propose forms of spatial
decomposition and train many NeRF’s to represent different
parts of the large scene. Mega-NeRF[30] and BirdNeRF[40]
focus on bird view reconstruction, while Block-NeRF[25]
focuses on street view. BungeeNeRF [35] takes a different
approach focusing on satellite view reconstruction, recog-
nizes the need for multi-scale reconstruction, and progres-
sively trains from big to small scales while increasing
network capacity. Urban Radiance Fields [21] presents a
multi-modal approach of combining lidar information with
RGB signals to address exposure differences in outdoor
scenes. VastGaussian [15] introduces spatial decomposition
approaches to 3D Gaussian splatting for large-scale bird view
scene reconstruction.

However, the aforementioned works develop optimization-
based models that need extensive training and are unsuitable
for online reconstruction during navigation or data acquisi-
tion. We explore the capabilities of feed-forward approaches
to reconstruct large-scale urban scenes, allowing on the fly
reconstruction times.

Augmentation for scene understanding: Data aug-
mentation is a proven technique for improving ML model
generalizability. Numerous augmentation methods have been



developed in the 2D vision space. We take inspiration from
CutOut [9] and CutMix [39] that cut 2D images out and
mix cuts respectively. These methods however cannot be
directly applied on input images for 3D NVS as they com-
promise cross-view consistency. Recently, 3D augmentation
techniques have been developed. Notably, Mix3D [18] mixes
elements/meshes from different synthetic indoor scenes to
compose new scenes that are not necessarily semantically
reasonable to improve generalizability following the effective
techniques of domain randomization[27], [28]. Their work
however is done in a limited indoor setting for 3D semantic
segmentation. There exists very few works [3], [7] that tackle
augmentation for feed-forward NVS, they only augment in
2D image space, severely limiting the variations introduced.

III. APPROACH

A. Data curation for Generalizable NVS

Large-scale urban scene data are not readily amenable
for generalizable NVS as the data covers a huge baseline.
For example, urbanscene3d [16] real datasets can cover
more than 1km2 areas spanning multiple high rise and
low rise buildings. Hence, an image in the scan may not
necessarily contribute meaningfully to the reconstruction of
another view; clustering images meaningfully is critical. We
test different algorithms as shown in Fig. 2 to achieve that
targeting the following criteria: First, it is pivotal to cluster
images in the scan that are related to each other (i.e. looking
more or less at the same structures in the scene). Second, the
selection of the group size is crucial as too small of a group
size will give very little information to the model whilst
a very big group size would give confusing and unrelated
information to the model. Third, the group size should be
constant to allow efficient batching when training. We show
a qualitative output of clustering images in Fig. 4.

1) Capture Sequence grouping: Using the capture se-
quence—defined as the order in which images are captured
along the camera’s trajectory over time—to cluster images
is a straightforward but naive approach. Abrupt changes in
the camera’s trajectory can result in images within the same
cluster capturing entirely different parts of the scene, as
illustrated in Fig.2.a. Additionally, this method overlooks
valuable images from later in the sequence that capture the
same scene region but are excluded due to their temporal
position.

2) Grid-Based Grouping: In this approach, a grid is
overlaid on the ground plane, and cameras are clustered
based on proximity to the centers of grid cells, with each
cluster containing the K nearest neighbors to a grid cell
center. While straightforward, this method has limitations:
cameras that are close in Euclidean space may have vastly
different viewing frustums, leading to poor clustering results,
as shown in Fig.2.b. To address this, we added an angular
constraint to ensure that cameras within a cluster are not
only spatially close but also oriented in roughly the same
direction. Despite this refinement, the approach still struggles
to group images that capture the same scene area from
different angles.

3) Ray intersection with ground plane: To capture both
the Euclidean distance and the viewing distance, we pro-
jected the center pixel of each image into the world frame
so that it intersects with the ground plane. We then use the
distances between the intersection points as our clustering
metric. A drawback of this approach is that you need to
estimate the distance from the ground plane to each camera.
To achieve this, we use Metashape to run SfM on small hand-
picked images and calculate the height of the cameras relative
to the ground plane. We then use this height to calculate
all other camera distances to the ground plane, assuming
the ground is flat. This approach improved clustering perfor-
mance but still failed in many cases near high-rise buildings,
as cameras could be looking at different areas even though
their rays intersect close to each other at the ground plane
level.

4) SfM shared points: To ensure that images within a
cluster view the same structures, we perform a full Structure-
from-Motion (SfM) process for each scene and use the
number of shared points among different camera views as the
metric for clustering. This approach consistently produced
the best results, as illustrated in Fig. 4, while effectively
avoiding edge cases seen in previous methods. The core
idea is that cameras observing the same scene exhibit high
correspondence, which we capture by computing a similarity
matrix for all images in the scene using SfM. Based on this
matrix, we uniformly select cluster centers across the scene
and determine the top K views for each cluster according
to their similarity scores. Like all clustering methods, this
approach requires careful tuning of cluster size to achieve
optimal performance.

B. Augmentation

Recognizing the challenges of training feed-forward NVS
models directly on the real data with unconstrained capture
trajectories, we further propose to augment such scenes with
constrained sampling methods. First we reconstruct the scene
using traditional structure from motion and multi-view stereo
approaches, then sampling novel views in an object-centric
manner to augment the training of the feed-forward model.
We discuss various approaches to sampling in what follows
below.

Background on scene sentric dome sampling: A
common approach for sampling images from a reconstructed
scene uses an Archimedean spiral or dome above the mesh,
as shown in Fig.3, commonly applied in models like Pixel-
NeRF [38]. While effective for standard setups, it struggles
with large scenes, often resulting in flat, disproportionate
reconstructions and reliance on simple homography transfor-
mations. To address this, we propose two improved camera
sampling strategies for larger scenes.

1) Multiscale Grid Sampling: A straightforward approach
involves dividing the scene into cells at varying grid scales,
as shown in Fig.3a. Using multiple scales helps prevent
the model from overfitting to a single scale. Virtual domes
are then placed over each cell, and cameras are uniformly
sampled within a limited azimuth and elevation range. To



(a) Capture sequence grouping (b) Grid-based grouping (c) Ray intersection grouping (d) SfM shared points

Fig. 2: Scene clustering methods for training GNVS models. Colored cameras represent cameras within the same cluster.
(a), (b) and (c) show edge cases where these methods would cluster wrong images into a scene.

(a) Multiscale Grid Sampling (b) Semantic Sampling

Fig. 3: Two types of augmentation to reduce low overlap among outdoor scene datasets: (a) Multiscale Grid Sampling
and (b) Semantic Sampling. The left figure shows dynamic camera placements for varying grid scales, and the right figure
illustrates focused sampling around urban regions.

avoid manually fine-tuning grid scales for each scene, we
dynamically adjust them based on the scene’s height-to-
width/length ratios. This ensures finer grids for large scenes
and coarser grids for smaller ones, as illustrated in Fig.3a.

2) Semantic Building Sampling: This approach focuses
on underrepresented areas, such as urban regions, which are
often overshadowed by forest-dominated samples. Unlike the
multiscale grid method that uniformly samples the scene,
this method uses semantic camera sampling to identify urban
areas as regions of interest and concentrates camera samples
around them. As illustrated in Fig.3b, this strategy reduces
forest overrepresentation and improves dataset diversity by
prioritizing urban scenes.

Plane fitting: We simplify perform building detection us-
ing a geometric approach: fitting a plane to the Kth percentile
of points (sorted by Z height) in the scene point cloud via
least-squares. This plane slices the point cloud, rendering a
top-down orthographic view, which is converted into binary
masks and then bounding boxes. These bounding boxes
initialize dome placements for targeted camera sampling.

To enable multiscale novel view synthesis (NVS), we
extend this by combining bounding boxes. For each detected
box, we merge it with 1 to M nearest boxes, creating
clusters that represent individual buildings and multi-building
regions, ensuring comprehensive and scalable scene coverage

as showing in Fig.3b.

IV. EXPERIMENTAL SETUP

Dataset: For our experimental analysis, we focus ex-
clusively on the Campus scene from the UrbanScene3D
[16] dataset. This scene spans an area of 1.3 × 106m2 and
includes 178 objects, providing diverse urban structures for
evaluation.

Metric: In evaluating our model, we will apply a com-
bination of quantitative metrics and qualitative assessments.
Quantitatively, we will utilize the Peak Signal-to-Noise Ratio
(PSNR) to measure the fidelity of the reconstructions against
the corrupting noise. Our approach will include visual in-
spections to assess the realistic rendering of the scenes.

Comparison: Our analysis involves comparing the perfor-
mance of PixelNeRF on the real dataset with its performance
on an augmented dataset that combines real and synthetic
data. To achieve this, we first evaluate PixelNeRF’s perfor-
mance on the real dataset alone, ensuring that the data is
curated effectively. We identify the best-performing approach
using the proposed four preprocessing methods described in
Section III-A. Once this baseline is established, we integrate
augmentations generated through Aug3D, employing the
two augmentation strategies detailed in Section III-B, and
compare the results to assess the impact of augmentation.



Fig. 4: Qualitative comparison of clustering methods for aerial image grouping. Each column represents a method: (a)
Camera Sequence groups images with overlap in scenes 1 and 2, but misses 3 and 4. (b) Grid-Based grouping overlaps
scenes 1 and 3, missing others. (c) Ray Intersection captures overlap in scenes 1, 2, and partly 3, but not 4. (d) SfM Shared
grouping achieves high overlap across all scenes, demonstrating superior performance.

Fig. 5: Qualitative comparison of models trained with 10 images per cluster versus 20 images per cluster using the SfM
shared points method on a campus scene. Reducing the cluster size from 20 to 10 demonstrates marginally improved visual
quality. The first row represents fine-grained predictions, while the second row shows coarse-grained predictions. Columns
depict Input Views, Ground Truth, Depth, and Predictions.



Compute Setup: PixelNeRF [38] is run with 256 hidden
layers and fixed encoder weights, adhering to its default
configuration to meet low computational requirements. We
utilize two 32GB Tesla V100 GPUs to evaluate the real
Campus dataset. Grid-based augmentation, combined with
the real dataset, is processed on a single 24GB NVIDIA
RTX 3090 Ti. All other experiments are conducted using
a 10GB NVIDIA RTX 3080, ensuring consistency across
setups where applicable.

V. RESULTS

Evaluating Data Curation Methods: Experiments on the
Campus scene from UrbanScene3D [21] demonstrate that
SfM shared grouping out of the methods mentioned in Sec-
tion III-A achieves the best performance for Generalizable
Novel View Synthesis using PixelNeRF [38]. Using input
images set to 3, a cluster size of 20, and Peak Signal-to-Noise
Ratio (PSNR, higher the better) as the evaluation metric,
SfM shared grouping attains the highest PSNR of 20.03 and
an average PSNR of 14.6, outperforming Camera sequence
grouping and Grid-based grouping, with PSNR values of
9.7 and 12.2, respectively as shown in Table I. Qualitative

TABLE I: Performance of Different Clustering Methods

Method Best PSNR↑ Low PSNR↑ Avg. PSNR↑

Sequence grouping 9.7 0.0 3.5
Grid-Based grouping 12.2 0.0 4.6
Ray intersection 13.6 0.0 9.9
SfM shared grouping 20.03 10.9 14.6

results in Fig. 4 confirm that SfM shared grouping provides
better visual correspondence and hence leads to stable train-
ing performance. Reducing the cluster size from 20 to 10
further improves PSNR to 22.94, additionally highlighting
the importance of high overlap within input clusters for
reconstruction fidelity, also shown with qualitative results in
Fig. 5.

Baseline Performance: Table II details the results for
the real and augmented datasets. For the real dataset, using
a cluster size of 20 images, we observe a slight decline in
PSNR as the number of input views increases. Specifically,
the PSNR decreases from 20.03 for 3 input views to 19.59
for 9 input views. This trend suggests that while additional
views provide more information, they may also introduce
noise or redundancy that hinders GNVS performance.

Aug3D + Real vs Real dataset: The synthetic dataset,
reconstructed using Grid Sampling and Semantic Plane Fit-
ting, achieves PSNR values of 29.12 and 28.79, respectively,
with 3 input images, a cluster size of 20. Augmenting the
real dataset with these under the same parameters yields
the best PSNR of 21.80 for the Semantic approach, slightly
surpassing Grid Sampling at 21.67. These results validate
the effectiveness of the Aug3D dataset in enhancing GNVS
performance.

VI. DISCUSSION

This work demonstrates the potential of feed-forward
Generalizable Novel View Synthesis (GNVS) models like

TABLE II: Results for various datasets

Dataset Configuration Best PSNR

Real Dataset (Baseline) Input views 3 20.03
Input views 6 19.95
Input views 9 19.59

Synthetic Dataset (ours) Grid Sampling 29.12
Semantic Plane Fitting 28.79

Aug3D (ours + baseline) Grid 21.67
Semantic 21.80

PixelNeRF for large-scale outdoor scenes, exemplified by the
UrbanScene3D dataset. To address the need for a dataset
curation pipeline, we proposed four clustering strategies,
identifying SfM shared grouping as the most effective. Re-
ducing the cluster size further improved performance, high-
lighting the critical role of high-view overlap. Additionally,
our Aug3D augmentation method, which generates synthetic
views through Grid Sampling and Semantic Plane Fitting,
boosted GNVS performance when integrated with real data.
Despite these advances, challenges remain, including mitigat-
ing noise from additional input views and ensuring scalability
to diverse datasets and models, pointing to future directions
in adaptive clustering and semantic-driven 3D augmentation.
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APPENDIX

A. OTHER SEMANTIC SAMPLING METHOD

In addition to the geometric plane fitting approach, we
experimented with a second semantic sampling method using
the Segment Anything Model (SAM) to detect buildings

https://ieeexplore.ieee.org/document/6909453
https://api.semanticscholar.org/CorpusID:232307471
https://api.semanticscholar.org/CorpusID:232307471
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://ieeexplore.ieee.org/document/8953959/
http://arxiv.org/abs/2107.04286
https://ieeexplore.ieee.org/document/9665916/
https://api.semanticscholar.org/CorpusID:209376368
https://api.semanticscholar.org/CorpusID:209376368
http://hdl.handle.net/20.500.11850/128029
http://hdl.handle.net/20.500.11850/128029
https://ieeexplore.ieee.org/document/9879805/
https://ieeexplore.ieee.org/document/9879805/
https://api.semanticscholar.org/CorpusID:221112229
https://api.semanticscholar.org/CorpusID:221112229
https://api.semanticscholar.org/CorpusID:54444417
https://api.semanticscholar.org/CorpusID:54444417
http://arxiv.org/abs/2312.13150
http://arxiv.org/abs/2312.13150
http://arxiv.org/abs/2202.05263
http://arxiv.org/abs/2202.05263
https://api.semanticscholar.org/CorpusID:236162433
https://api.semanticscholar.org/CorpusID:236162433
https://api.semanticscholar.org/CorpusID:220546413
https://api.semanticscholar.org/CorpusID:220546413
https://ieeexplore.ieee.org/document/9878491/
https://ieeexplore.ieee.org/document/9878491/
http://ieeexplore.ieee.org/document/6619113/
http://ieeexplore.ieee.org/document/6619113/
https://api.semanticscholar.org/CorpusID:209405397
https://api.semanticscholar.org/CorpusID:209405397
https://api.semanticscholar.org/CorpusID:232168851
https://api.semanticscholar.org/CorpusID:232168851
https://api.semanticscholar.org/CorpusID:232352425
https://api.semanticscholar.org/CorpusID:232352425
https://ieeexplore.ieee.org/document/9008296/


Fig. 6: Qualitative comparison of PixelNeRF trained exclusively on synthetic datasets generated using grid sampling versus
semantic sampling methods on the UrbanScene3D Campus scene. The first row represents fine-grained predictions, while
the second row shows coarse-grained predictions.

Fig. 7: Qualitative comparison of PixelNeRF trained exclusively on synthetic datasets generated using grid sampling versus
semantic sampling methods on the UrbanScene3D residence scene, showcasing coarse predictions.

from a top-down view. While SAM showed promise, it was
found to be highly sensitive to shadows, resulting in in-
consistencies in detecting building structures. Comparatively,
the geometric plane fitting method yielded more reliable
and accurate results, further emphasizing its suitability for
generating semantically meaningful views in diverse lighting
conditions.

B. ADDITIONAL QUALITATIVE RESULTS

To further illustrate the effectiveness of the proposed
Aug3D augmentation strategies, we provide qualitative com-
parisons of the reconstructed scenes using Grid Sampling and

Semantic Plane Fitting.
Figure 6 showcases the qualitative results on the Urban-

Scene3D Campus scene with 3 input images, comparing
models trained exclusively on synthetic datasets generated
via grid sampling versus semantic sampling methods. No-
tably, the semantic sampling approach demonstrates im-
proved reconstruction fidelity, with sharper edges and more
accurate structural details, particularly in regions with com-
plex geometries.

In Figure 7, we extend this analysis to the Residence
scene, evaluating the same augmentation techniques. Similar
trends are observed, with semantic sampling outperforming



grid sampling in preserving finer scene details and mitigating
artifacts. The results underline the potential of semantic-
driven augmentation to enhance the diversity and quality of
synthetic datasets, thereby benefiting GNVS training.

These qualitative evaluations, along with our experiments,
reinforce the quantitative findings presented in Section V,
validating the advantages of integrating semantic-driven syn-
thetic views into the GNVS pipeline. Future work can
explore enhancing SAM’s robustness to lighting variations or
combining its capabilities with geometric methods for more
versatile augmentation strategies.
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